
����� �����
	�� �������	 �����������������
� !"�#�$%��&��'�()���*' (+#�' ,��*#��-�.(+�&��/0�-'

�1��23�546(+�.� �7(+8:9;()���

< $%�-��$0=>,�?��&'��

@BADCFE5GIHKJ5GML N�EO@3PBQSRTPBQKU)VWEYX[Z\R]P_^`JO@SQaJ[R.U)b:QdcPeX`cPSQSZfH>C cPgGMZhR.U
i PBQSRjE[QaXlkmZ\RonhApE[RjXlCqZfHsr�PtG:Cvu�w�PBQSxBnhQaEOPtnyP

z|{.}�~K�I~3�%~a���h�����+{Y�%���a�5{.���t{O~���{.�q���.}&~S����{�����������~��
�5�5��{O~1�`�e}��e���a�S����t{O~a������ �¡£¢5¢O¤
z¦¥.§%¨t¤O§�¤�z|}�©.�K�«ª\¬dW®S�.zy~3���I�

¬¯�t�a}����5{�¨�°±¤%�.�Y��{����[���«§�§��²§�¤5¤O§

³T´Dµ ¶¸·-¹-º¼»\½Y¾%¿À»\Á:ÂÄÃqÁÆÅÈÇÊÉ7´ Ë�ÌÎÍOÏTÐ�ÇÊÃ

Chapter Page

1 Introduction
1.0 Purpose 1
1.1 Requirements and Context 1
1.2 Outline 2
1.3 Reference Documents 2
1.4 Development 2

2 The FAPAR Algor ithm
2.0 Introduction 3
2.1 Input Data 3
2.2 Preclassification 3
2.3 Anisotropic Normalisation 4
2.4 Atmospheric Rectification 5
2.5 Calculation of the Fraction of Photosynthetically

Active Radiation (FAPAR) 5
2.6 Product Generation 5

3 Generalised IDL Code
3.0 Introduction (Design issues) 9
3.1 The IDL Package 9
3.2 Compilation 12
3.3 Input and Output 13
3.4 Main Driver and User Interface (Fapar.pro) 13
3.5 Error checking 18
3.6 Anisotropic Normalisation 18
3.7 Atmospheric Rectification 18
3.8 FAPAR Calculation 21
3.9 Product Generation 22
3.10 Code Modification and Updating 22

4 Generalised C++ Code
4.0 Introduction (Design issues) 23
4.1 The C++ Package 23
4.2 Compilation 25
4.3 Input and Output 28
4.4 The Main Driver and User Interface Module (Fapar.cpp) 29
4.5 Error Checking 37
4.6 The Sensor Class 37
4.7 Sensor Initialisation 38
4.8 sensor Operations − Calculating FAPAR (sensor.Fapar()) 40
4.9 Code Modification and Updating 40

5 Code Testing
5.0 Introduction 43
5.1 The Synthetic Test Data Set 43
5.2 The SeaWiFS Data Set 43
5.3 The SPOT VEGETATION Data Set. 50

i

6. References 59

7. Appendix
C++ Class Definitions 60

ii

Figure Page

2.0 Processing Flow for FAPAR Product Generation for a Single
Sensor.

3

2.1 Spectral tests defining the FAPAR spectral domain (derived
from Gobron et al, 2001).

4

2.2 Anisotropic normalisation function. 4

2.3 Atmospheric rectification polynomials and coefficients. 6

2.4 FAPAR polynomials and coefficients. 6

2.5 Mapping to the recommended output product. 7

3 The IDL Fapar Package. 10

3.1 The main driver routine and user interface, Fapar.pro. 10

3.2 IDL functions and procedures in FaparGeneric.pro. 11

3.3 IDL functions and procedures in FaparSensor.pro. 12

3.4 IDL functions and procedures in FaparTest.pro. 12

3.5 IDL functions and procedures in FaparExamples.pro. 13

3.6 IDL package README file. 14

3.7 Main IDL driver and user interface routine Fapar.pro. 17

3.8 Anisotropic Normalisation (IDL). 19

3.9 Atmospheric Rectification (IDL). 20

3.10 Fapar Calculation (IDL). 21

4 The C++ FAPAR package. 24

4.1 The copyright notice provided with the C++ package. 25

4.2 The C++ package README. 26

4.3 Control flow in the main driver and user interface, Fapar.cpp. 30

4.4 The GeneralCommandLineParameters class. 31

4.5 The SensorMapParameters class. 31

4.6 The Math_Vector<T> class. 32

4.7 Definition of the Index<size_t> class (continued). 33

4.8 Definition of the Sensor class. 38

4.9 Instantiation of the SensorSEAWIFS class. 39

4.10 Operation of the Sensor class to calculate FAPAR. 41

4.11 Definition of the FaparProduct class. 42

5.0 The Synthetic Test Data Set. 44

5.1 The SeaWiFs test Image, reflectance range 0−0.4, bands 440,
670, and 880 nm. in blue, green, and red channels respectively.

46

5.2 Solar Zenith Angles for SeaWiFs Test Image. 47

iii

Figure Page

5.3 Viewing zenith angles for the SeaWiFs image. 47

5.4 Relative azimuth angles for the SeaWiFs image. 48

5.5 SeaWiFs image: Fraction of Absorbed Photosynthetically Active
Radiation (FAPAR).

49

5.6 The SPOT VEGETATION Burkino Fasso image, reflectance
range 0−0.4, bands 440, 670, and 880 nm. in blue, green, and red
channels respectively.

51

5.7 Solar zenith angles for the SPOT VEGETATION Burkino Fasso
image.

52

5.8 View zenith angles for the SPOT VEGETATION Burkino Fasso
image.

52

5.9 Relative azimuth angles for the SPOT VEGETATION Burkino
Fasso image.

53

5.10 SPOT VEGETATION Burkino Fasso test image: Fraction of
Absorbed Photosynthetically Active Radiation (FAPAR)

54

5.11 The SPOT VEGETATION, W. Europe, Image, reflectance range
0−0.4, bands 440, 670, and 880 nm. in blue, green, and red
channels respectively.

56

5.12 Solar zenith angles for the SPOT VEGETATION, W. Europe,
image.

57

5.13 Viewing zenith angles for the SPOT VEGETATION, W.
Europe, image.

57

5.14 Relative azimuth angles for SPOT VEGETATION, W. Europe,
image.

57

5.15 Fraction of Absorbed Photosynthetically Active Radiation
(FAPAR) for the SPOT VEGETATION, W. Europe, test image.

58

iv

Table Page

2.1 Band wavelengths and values of the anisotropic correction
parameters.

5

5.0 Specifications of the SeaWiFs test image. 45

5.1 Specifications of the SPOT VEGETATION image (Burkino
Fasso).

50

5.2 Specifications of the SPOT VEGETATION, W. Europe, image 55

v

vi

Chapter 1

Introduction
1.0 Purpose

This guide summarises the background, design, and use of the STARS group FAPAR
algorithm software. The code was developed in IDL and C++, and is available as a
package. The code was developed in such a manner that the end user will be able to
manipulate the user interface easily, whilst the main algorithm components are
protected behind the interface. The addition of new sensors, using existing
generalised codehas been facilitated. Theaddition of new, sensor specific code, when
developments require it, has been incorporated, especially within the C++ code. The
intention is that this code be made available on the internet for downloading by
potential users.

1.1 Requirements and Context

The STARS group has developed procedures for producing the Fraction of Absorbed
Photosynthetically Active Radiation (FAPAR) using a technique which is optimised
for various sensors. The technique incorporates corrections for angular, soil, and
atmospheric variations. The sensors for which the routines have been optimised
include GLobal Imager (GLI, on ADEOS−2), MEdium Resolution Imaging
Spectrometer Instrument (MERIS, on ENVISAT), Sea Wide Field−of−view Sensor
(SeaWiFS on ORBVIEW−2), and SPOT VEGETATION, reflecting the "Global
Vegetation Monitoring" perspective of the group.

The current package is a consolidation and development of various research codes
produced by N. Gobron, in general, F. Mélin, for SeaWIfs, and M. Verstraete, for the
GLI sensor. The code, having been made more user friendly and robust, is made
available to others. The code is designed to be of assistance to two levels of users:
the "expert" scientific user who would understand the production of the product and
would be able to readily assimilate the code into their own procedures; and a more
general user who would only be interested in deriving the product with as little
difficulty as possible. The code is made available in the IDL programming language,
and in C++. This is a core product, intended to be downloaded from the GVM
website, with a generic input structure and a recommended output format in a form
that is both stand−alone yet also easily integrated into users own operational code,
whilst at the same time not jeopordising the integrity of the computational code. The
option to save the intermediate rectified channels is available.

The IDL code has been compiled and run under versions 5.2 and 5.4 of IDL. C++
code was compiled using version 2.95.2 of the GNU gcc compiler suite (g++). These
programs have been run on AIX IBM 6000 and Sun Ultra 60 machines. The aim has
been to write code that, in general, conforms to IDL programming guidelines
("Coding Style Guide for Interactive Visuals, Inc.", 1999, Interactive Visuals)
exceptions to the recommendations were made, however, when efficiency or
expediency were at stake. The C++ code conforms to ISO/IEC 14882 and uses
features of the Standard Template Library. Where appropriate C code conforms to
ISO9899:1990 with corrections in the Technical Corrigenda 1994 and 1996.

1

1.2 Outline

The report is split into four sections: the first describes the FAPAR algorithm as it
affects the software design, the second and third sections provide an overview of the
design, components, and use of the IDL and C++ packages, the last section presents
examples of synthetic and real remotely sensed data sets.

1.3 Reference Documents

This document, which describes the software publicly available to generate FAPAR
using algorithms optimised for individual sensors, is one of a series of documents
covering this approach. The physics and optimisation is fully described in separate
technical reports (Gobron et al. 2001, references 2 through 5 and 7) and are available
on the web at http://www.enamors.org and at http://ies.jrc.cec.eu.int/Units/gvm under
the STARS group.

1.4 Development

This code results from research and development carried out here, at the JRC. This
research is ongoing, both to improve current techniques, and to exploit new
instruments. The code is, therefore, a snapshot of the current state of the art and will
be added to, and modified, in future according to developments − facilities for such
adaptation is built into the code. As this is an ongoing development, some of the code
incorporated in the software derives from earlier research. This code is maintained in
the software package because it corresponds to one or more current, operational,
implementations. For the general user, though, thecode based on the latest research is
implemented.

2

Chapter 2

The FAPAR Algor ithm

2.0 Introduction

The scientific background to the algorithm is described in Gobron et al. (2000) and
Gobron et al. (2001, ref:6). In this chapter a brief overview of the algorithm, primarily
as it affects the code development, and consolidated tables of coefficients and
polynomials, are presented. In so far as the software development is concerned, for
processing data from a particular sensor, there are 7 main steps, as shown in figure 2.0.

Figure 2.0 Processing Flow for FAPAR Product Generation for a Single Sensor.

2.1 Input Data

The data input is calibrated, top of the atmosphere, bidirectional reflectance factor
(BRF), which should include compensation for the variable sun−earth distance. As
well as reflectance, the illumination geometry is required (solar zenith and azimuth)
and viewing geometry (viewing zenith and azimuth) for each pixel (strictly speaking
relative azimuth is used).

2.2 Preclassification

Preclassification is used to define the bounds of the technique. There are 4 main tests
(figure 2.1). As the proportion of pixels failing to get through these tests is usually
high, and the FAPAR computation also being time consuming, the overhead caused
by prefiltering is negligible compared to the time saved.

3

Data Input

PreClassification

Anisotropic Correction

Atmospheric Rectification

FAPAR Calculation

Product Generation

Output

Figure 2.1 Spectral tests defining the FAPAR spectral domain
(derived from Gobron et al, 2001 ref:6).

2.3 Anisotropic Normalisation
Signal variation caused by changes in the geometrical conditions are accounted for by
a procedure based on the parametric bidirectional reflectance model (figure 2.2) of
Rahman et al. 1993 − the Rahman, Pinty, Verstraete (RPV) model. This
implementation,which is a generalised procedure, requires estimates of three
parameters: ρi0, ki, and Θi

hg, in order to characterise the vegetation canopy. These
parameters are independent of geometry and illumination, but are specific to each
sensor (Table 2.1). For greater details of the technique the reader is referred to the
references.

Figure 2.2 Anisotropic normalisation function.

4

ρ
blue

 Ñ 0 or ρ
red

 Ñ 0 or ρ
near infrared

 Ñ 0

ρ
blue

 Ò 0.3 or ρ
red

 Ò 0.5 or ρ
near infrared

 Ò 0.7

ρ
blue

 Ó ρ
near infrared

 ρ
near infrared

 Ñ (1.25 X ρ
red

)

No

Top of Atmosphere, Bidirectional Reflectance Factor, ρ

Yes

Yes

Yes

Yes

Flag = 1
"Bad"

Flag = 2
"Cloud, snow, ice"

Flag = 3
"Water, deep shadow"

Flag = 4
"Bright surface"

No

No

λ
i
= central wavelength (blue, red, near infrared) of band i

ρtoa(Ω
0
, Ω

v
, l

i
) = BRF values measured by the sensor in band λ

i
as a function of the

illumination and observation geometry, defined by the appropriate zenith
angles and their relative azimuth.

F(Ω
0
, Ω

v
, k

λi
, Ω

λi

HG, ρ
λic

) = anisotropic reflectance function representing the shape of

the reflectance field where:
k

λi
, Ω

λi

HG, ρ
λi
 = RPV parameters optimised, a priori, for each spectral band.

ρ(λ
i
) = ~ ρtoa(Ω

0
, Ω

v
, λ

i
)

F(Ω
0
, Ω

v
, k

λi
, Ω

λi

HG, ρ
λic

)

Table 2.1 Band wavelengths and values of the anisotropic correction parameters.

Sensor Central λ

(nm)

Width

(nm)
ρic ki Θi

hg

GLI 443 10 −0.13515 0.45696 0.01813

678 10 −0.65625 0.78673 0.12335

865 10 0.63484 0.87758 −0.00264

MERIS 441 10 −0.13515 0.45696 0.01813

685 10 −0.65625 0.78673 0.12335

865 10 0.63484 0.87758 −0.00264

SeaWiFS 443 20 0.23265 0.56184 −0.04125

670 20 −0.44444 0.70535 0.03576

865 40 0.63149 0.86644 −0.00102

SPOT VEGETATION 450 20 −0.25910 0.46011 0.02979

640 30 −0.53764 0.77449 0.10338

840 50 0.62335 0.88468 −0.00219

2.4 Atmospher ic Rectification
Minimisation of atmospheric and soil perturbation factors is based on the model by
Gobron et al., 1997. Rectified red and near infrared channels are produced using
information from combinations of the blue with each of the prerectified red and near
infrared channels respectively. Development and calibration has resulted in, sensor
specific, polynomial coefficients for the band combinations, for each of the rectified
channels. For the near infrared channel, ratios of polynomials are used (figure 2.3).

2.5 Calculation of the Fraction of Absorbed Photosynthetically Active
Radiation (FAPAR)
FAPAR is calculated from the rectified red and near infrared channels. Calibration and
optimisation has resulted in a set of polynomial coefficients for each sensor. FAPAR
is calculated as a ratio of polynomials (figure 2.4).

2.6 Product Generation
In the research code, various output formats exist so it was decided to define a single
output format which would be adopted in all the new codes, and would be
recommended to other users. For reasons of space and portability it was decided that
the flags should be included in the same data array as the FAPAR values. It was also
decided that sufficient accuracy would be retained by using output arrays, or files, of
byte (unsigned) data. The mapping is shown in figure 2.5. The limits imposed by the
scaling ensure a maximum accuracy of Ô 0.002.

5

Figure 2.3 Atmospheric rectification polynomials and coefficients.

Figure 2.4 FAPAR polynomials and coefficients.

6

 B
rect red

 = l
1,1

 (B
blue

+ l
1,2

)2 + l
1,3

 (B
red

+ l
1,4

)2 + l
1,5

 B
blue

B
red

 l
1,1

 (B
blue

+ l
1,2

)2 + l
1,3

 (B
nir

+ l
1,4

)2 + l
1,5

 B
blue

B
nirB

rect nir
 =

 l
2,1

 (B
blue

+ l
2,2

)2 + l
2,3

 (B
nir

+ l
2,4

)2 + l
2,5

 B
blue

B
nir

GLI −1.85260 1.10670 7.061700 −0.669650 23.01500

0.40770 2.60720 −0.031230 14.901000 14.90100

MERIS −1.85260 1.10670 7.061700 −0.669650 23.01500

0.40770 2.60720 −0.031230 14.901000 14.90100

SeaWiFS −0.66956 −0.16930 −0.071256 −0.090485 −0.81353

−0.03544 −1.34380 −0.416730 −0.451230 −0.99648

Vegetation −1.11350 2.16970 0.292930 4.261400 65.12800

−204.33000 −0.13200 0.010911 23.812000 5.59270

l
1

l
2

l
1

l
2

l
1

l
2

l
1

l
2

GLI l −11.12000 −0.028923 1.77210 0.098161 11.05800

MERIS l −11.12000 −0.028923 1.77210 0.098161 11.05800

SeaWiFS l −9.87250 −0.027458 2.91440 0.059376 10.90400

Vegetation l −12.87700 −0.019822 1.01800 0.138320 14.59300

 l
1,1

 B
R nir

 − l
1,2

 B
R red

 − l
1,3

 (l
2,1

 − B
R red

)2 + (l
2,2

 − B
Rnir

)2 + l
2,3

FAPAR =

GLI 0.28787000 0.33326000 −0.0073898000

−0.13661000 0.32259000 0.0983670000

MERIS 0.28787000 0.33326000 −0.0073898000

−0.13661000 0.32259000 0.0983670000

SeaWiFS 0.25130709 0.30589629 −0.0048298022

−0.32136740 0.31415914 −0.0107441800

Vegetation 0.37598000 0.50132000 −0.0109110000

−0.17150000 0.29464000 0.1100900000

l
1

l
2

l
1

l
2

l
1

l
2

l
1

l
2

Figure 2.5 Mapping to the recommended output product.

7

FAPAR

0.0

1.0

Flags

Recommended
Output

(unsigned byte)

0

250

Flag = 1
"Bad"

Flag = 2
"Cloud, snow, ice"

Flag = 3
"Water, deep shadow"

Flag = 4
"Bright surface"

251

252

253

254

Offset = 0
Gain = 250

FAPAR
out

 = FAPAR Õ gain + offset

FAPAR

Flags

Input Value

or

8

Chapter 3

Generalised IDL Code

3.0 Introduction (Design issues)

The sizes of satellite sensor data sets can be, and in fact usually are, large. The prime
operational constraint is, therefore, one of memory requirement. The code developed
has, therefore, been optimised with this in mind, sometimes at the (slight) expense of
computational efficiency.

There was a requirement to generalise the procedures as far as possible, and to
minimise the sensor specific ones. The program structure reflects this requirement.
Unfortunately there are differences amongst the implementations that make the task of
generalisation more complicated. Furthermore, a general desire to update the code
with improved routines as they are developed further complicates, and dictates, the
form of the program structure.

The other main design issue is how to incorporate the sensor specific information both
at the level of the program structure, and at the level of program control, whilst
maintaining generality as much as possible.

The worst case for generality, yet the simplest case as far as implementation is
concerned, is to use a switch statement early on in the control program to divert
control to sensor specific code. After the switch statement it becomes difficult to use
generic (control) code. For generality it is necessary to postpone sensor specific
implementation as long as possible. In this software, selection of sensor specific code
is achieved by passing a string defining the sensor type in the program flow and using
this as a prefix to appropriate functions in combination with the "Call_Function"
routine. This approach means that the controlling code can be written in a general
manner, yet calls to sensor specific code can be made as and when necessary.

Generality also suffers as not only are the polynomial coefficients specific to each
sensor, but the form of the polynomial and their implementation also varies (and is
likely to be modified in the future). So, although the polynomials can be written as
generic polynomial functions, there implementation is sensor specific. The problem
arises when, after initialising the coefficients, control returns to the main code.
Which polynomial should then be used? To simplify this, a structure is returned
containing not only the coefficients (both numerator and denominator if implemented
as a ratio) but the name of the polynomial which is to be associated with these
coefficients. The correct polynomial, along with the appropriate coefficients is called
from the control code also using "call_function".

3.1 The IDL Package.

The Fapar package is delivered as a tarred and gzipped file (Fapar_1.0.pro.tar.gz, 1.8
MB) which unpacks into a directory ../ Fapar_1.0. Figure 3.0 shows the package
layout after unpacking (58.5 MB). In the top level directory: FaparStartUp is used to

9

load the Fapar program, Fapar.pro (figure 3.1) contains the main driver and user
interface program; FaparGeneric.pro (figure 3.2) contains the generic routines; and
FaparSensor.pro (figure 3.3) the sensor specific routines. This package format has
been adopted to make the code and its handling simple and clean for the end user.
Operationally, a better layout would be to have all the routines separate, in appropriate
subdirectories, and to be compiled by IDL as required.

FaparColor.pro is code to implement a recommended colour lookup table. The color
table is loaded automatically on compilation of the program.

Figure 3.0 The IDL Fapar Package (file sizes in Bytes).

Figure 3.1 The main driver routine and user interface, Fapar.pro.

FaparTest.pro (figure 3.4) is run after the main Fapar package has been compiled. It
calls on the compiled procedures to produce results for each sensor, and these are
compared to a synthetic test reference data set. The tests are either passed, if within a
certain tolerance figure, or failed. The test data set are in the test subdirectory and
include test.in the input test data set, and the reference results test.fapar.sensor.

10

Fapar_1.0.pro.tar.gz 18304115

Fapar_1.0.pro.tar 59765248

Fapar.pro, 869
FaparColor.pro, 9454
FaparExamples.pro, 3452
FaparGeneric.pro, 19504
FaparSensor.pro, 9546
FaparStartUp, 671
FaparTest.pro, 6556
README, 7228

0001_B0.DAT, 5297736
0001_B2.DAT, 5297736
0001_B3.DAT, 5297736
0001_SAA.DAT, 41881
0001_SZA.DAT, 41881
0001_VAA.DAT, 41881
0001_VZA.DAT, 41881
S1998219110609.L1B_443.DAT, 7196862
S1998219110609.L1B_670.DAT, 7196862
S1998219110609.L1B_865.DAT, 7196862
S1998219110609.L1B_RAA.DAT, 7196862
S1998219110609.L1B_SZA.DAT, 7196862
S1998219110609.L1B_VZA.DAT, 7196862

test.fapar.GLI, 39546
test.fapar.MERIS, 39546
test.fapar.SEAWIFS, 39546
test.fapar.SPOTVEG, 39546
test.in, 276827

Examples

Test

Fapar_1.0

Fapar_1.0 58464000

Fapar .pro

Main Driver Routine and User Interface

function Fapar , blue, red, nir, SZA=SZA, VZA=VZA, SAA=SAA, VAA=VAA, sensor=sensor,
degrees=degrees, rectRed=rectRed, rectNir=rectNir

Figure 3.2 IDL functions and procedures in FaparGeneric.pro.

FaparExamples.pro (figure 3.5) loads example SeaWiFS and SPOT VEGETATION
imagery, computes the Fapar, and displays the results on the screen. The example
imagery is in the examples subdirectory and is in a modified format, not the original
distribution format.

11

pro Pr intAbor t
pro Pr intAtmosRectCoeffError , abort=abort
pro Pr intNoBandsSelectedError , name, abort=abort
pro Pr intInputDataError , nPars, abort=abort
pro Pr intKeywordError , name, abort=abort
pro Pr intNoProcessingError , abort=abort
function Pr intDimError , nDim0, nDim1, name=name, abort=abort

Messages (error and usage)

pro CheckInputDims, dims, names=pNames
pro CheckInputKeywords, bS, pNames=pNames, SZA=SZA, VZA=VZA, SAA=SAA,

VAA=VAA, sensor=sensor, sNames=sNames
function CheckData, blue, red, nir
function SubsetData, blue, red, nir, SZA, VZA, SAA, VAA, mask

Checking Set Up

function Poly0, d0, d1, cf
function Poly1, d0, d1, cf
function Poly2, d0, d1, cf

General Polynomial Functions

pro FRahman, data, solarZenith, viewZenith, relAzim, sensor
pro AnisotropicNormalisation, data, sZ, vZ, rA, sensor, degrees=degrees

Anisotropic Normalisation

function AtmosRectPoly0, d0, d1, cf
function AtmosRectPoly1, d0, d1, cf
function Atmospher icRectification, d0, d1, bands=bands, sensor=sensor
function DoAtmospher icRectification, data, sensor

Atmospheric Rectification

function FaparPoly0, d0, d1, cf
function FaparPoly1, d0, d1, cf
function DoFapar , data, sensor

Fapar Calculation

pro RectificationOutput, data, mask, missingVal, rectRed=rectRed, rectNir=rectNir
pro FaparOutput, data, mask, gain=gain

Output Format

FaparGener ic.pro
General and generalised routines

The README file provides a brief description of usage, references, copyright and
contact information (figure 3.6).

3.2 Compilation.

The procedures can be compiled separately using the .run command (.run
FaparSensor FaparGeneris Fapar), or the simple script, FaparStartUp, can be run
from the command line by @FaparStartUp.

Figure 3.3 IDL functions and procedures in FaparSensor.pro.

Figure 3.4 IDL functions and procedures in FaparTest.pro.

12

function GLIAnisotropicReflectanceParameters, nBands=nBands
function GLIAtmospher icRectificationCoefficients, band
function GLIFaparCoefficients

function SPOTVEGAnisotropicReflectanceParameters, nBands=nBands
function SPOTVEGAtmospher icRectificationCoefficients, band
function SPOTVEGFaparCoefficients

function SEAWIFSAnisotropicReflectanceParameters, nBands=nBands
function SEAWIFSAtmospher icRectificationCoefficients, band
function SEAWIFSFaparCoefficients

function MERISAnisotropicReflectanceParameters, nBands=nBands
function MERISAtmospher icRectificationCoefficients, band
function MERISFaparCoefficients

GLI Sensor

MERIS Sensor

SeaWiFS Sensor

SPOT Vegetation Sensor

FaparSensor .pro
Sensor specific data (coefficients, polynomial type)

FaparTest..pro
Routines to test FAPAR results

FunctionCalcFapar , brfdata, sensor
function FaparTestData, name, columns, rows
function FaparRefData, name, columns, rows, float=float
pro FaparTest, SPOTVEG=SPOTVEG, GLI=GLI, MERIS=MERIS,

SEAWIFS=SEAWIFS, DIR=DIR

Figure 3.5 IDL functions and procedures in FaparExamples.pro.

3.3 Input and Output.

The IDL code is designed to run from the command line. Input data, corresponding to
blue, red, near infrared, solar zenith, solar azimuth, view zenith, and view azimuth, are
in IDL fltarr() format. The type of sensor is identified with an IDL string to the input
keyword sensor. If the illumination and viewing geometry is in degrees, then these
will be converted to radians if the degrees keyword is set. A byte array, of identical
size to the input arrays, is returned in the recommended Fapar product format.

Solar zenith, solar azimuth, view zenith, and view azimuth are input as keywords. This
is not recommended as good practice in IDL, however, it facilitates error checking and
enables error messages, sent to the user, to be more informative.

Optionally, the anisotropically normalised, atmospherically rectified, data can also be
returned by setting the keywords rectRed and rectNir to a variable which has a
positive value. On completion these variables will contain the appropriate data in
floating point arrays.

The use of flat binary arrays as input was a constraint imposed: to avoid the need to
develop multifarious ingest routines; to present a robust and clean input interface to
the user; and to facilitate incorporating the code into the users’ programs. It does,
however, put the onus of converting sensor distribution formats into this generalised
format onto the user.

3.4 Main Dr iver and User Inter face (Fapar.pro).

The main driver and user interface is designed to be a straightforward linear set of
commands which call on the appropriate procedures to fulfill the 5 main functions:
error checking, anisotropic normalisation, atmospheric rectification, Fapar
computation, and Fapar product output (figure 3.7).

It is expected that this routine will be modified and manipulated by the users to meet
their own ends. This constraint has dictated its linear and uncomplicated structure and
the basic level of the interface with the main concepts. It calls on procedures,
representing the concepts, which are not expected to be, nor should be, altered by the
end user.

13

FaparExamples.pro
Routines to create and display FAPAR examples.

function ReadFile, fname
pro FaparLoadExampleSPOTVEG, blue, red, nir, SZA, SAA, VZA, VAA, dir=dir
pro FaparLoadExampleSEAWIFS, blue, red, nir, SZA, SAA, VZA, VAA, dir=dir
pro FaparExampleDisplay, fr, sensor=sensor
function FaparExamples, dir=dir, sensor=sensor

Figure 3.6 IDL package README file (continued).

14

NAME:
 README

PURPOSE:
This file provides general information about the package, written using IDL, to calculate the
Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) from satellite sensor data,
optimised for individual sensors (GLI, MERIS, SEAWIFS, SPOT VEGETATION).

APPLICABILITY:
This FAPAR estimation technique is applicable only to land surfaces under clear skies. Angular,
background, and atmospheric effects are taken into account by the physical algorithm. The
algorithm requires Top of Atmosphere spectral reflectances, as they are measured by the sensor,
after radiometric calibration and after correction for the variable Sun−Earth distance.

AUTHORS:
 Malcolm Taberner, Nadine Gobron and Frederic Mélin.

REFERENCES:
Gobron,N., Pinty,B., Verstraete,M, Widlowski,J−W, (2000). ‘Advanced Vegetation Indices
Optimized for Up−Coming Sensors: Design, Performance, and Applications’ , IEEE Transactions on
Geoscience and Remote Sensing, 38, 2489−2505.

Gobron, N., F. Mélin, B. Pinty, M. M. Verstraete, J.−L. Widlowski, and G. Bucini (2001) ‘A Global
Vegetation Index for SeaWiFS: Design and Applications’ , in Remote Sensing and Climate
Modeling: Synergies and Limitations, Edited by M. Beniston and M. M. Verstraete, Kluwer
Academic Publishers, Dordrecht, 5−21.

COPYRIGHT:
 (C) Nadine Gobron, Bernard Pinty, and Michel M. Verstraete 2001 The copyrights for these
programs and files remain with the authors.

Academic users:
Are authorized to use this code for research and teaching, but must acknowledge the use of these
routines explicitly and refer to the references in any publication or work. Original, complete,
unmodified versions of these codes may be distributed free of charge to colleagues involved in
similar activities. Recipients must also agree with and abide by the same rules. The code may not
be sold, nor distributed to commercial parties, under any circumstances.

 Commercial and other users:
Use of this code in commercial applications is strictly forbidden without the written approval of the
authors. Even with such authorization the code may not be distributed or sold to any other
commercial or business partners under any circumstances.

CONTENTS:
The Fapar package contains:

README: this file.

Fapar.pro: contains the main driver routine and is intended as the interface with the user.

FaparGeneric.pro contains the generalised procedures for input data checking, error processing,
anisotropic normalisation, atmospheric correction, fapar estimation, and output production.

Figure 3.6 (continued).

15

FaparSensor.pro contains sensor specific information (coefficients, equation form, etc.) required by
FaparGeneric.

FaparStartUp batch file used to compile the above. Initiated by @FaparStartUp at the IDL
command level.

FaparTest.pro a set of procedures which use the test data set to check the operation of the installed
routines. Initiated by .run at the IDL command level.

test.in a 169 columns x 234 rows test dataset containing 4 byte floating point, band sequential,
binary, synthetic, data. The bands, in order, are: blue, red, near IR, solar zenith, solar azimuth,
view zenith, view azimuth. The angles are in degrees.

test.fapar.gli
test.fapar.meris
test.fapar.seawifs
test.fapar.spotveg

are 169 columns x 234 rows, flagged, sensor specific, binary, byte, reference data, in the
recommended output format (see below).

FaparExamples.pro a set of procedures to show how to produce the FAPAR product illustrated
with (converted) SeaWiFS and SPOT Vegetation data.

0001_B0.DAT
0001_B2.DAT
0001_B3.DAT
0001_SAA.DAT
0001_SZA.DAT
0001_VAA.DAT
0001_VZA.DAT

example SPOT Vegetation data (modified format).

S1998219110609.L1B_443.DAT
S1998219110609.L1B_670.DAT
S1998219110609.L1B_865.DAT
S1998219110609.L1B_RAA.DAT
S1998219110609.L1B_SZA.DAT
S1998219110609.L1B_VZA.DAT

example SeaWiFS data (modified format).

IMPLEMENTATION:
 Ensure that either the programs are in the IDL path, or that they are in the current directory.

 At the IDL prompt, type @FaparStartUp to compile the procedures.

To test that everything works type .run FaparTest which will automatically run the program, for all
sensors, with the test data set provided these data are in the current directory. If the test data are
elsewhere set variable: testdir= "appropriate location" (or edit testdir in FaparTest.pro).

EXECUTION:
See the heading in Fapar.pro or call Fapar() without any arguments for a detailed description.
Basically, the function Fapar can be called from the command line or from other procedures without
adaptation

Figure 3.6 (continued).

16

INPUTS:
1. arrays containing the top of the atmosphere, radiance calibrated, solar distance compensated,

bidirectional reflectance factors for the appropriate blue, red, and near−infrared bands (input
separately).

2. arrays containing the solar zenith, solar azimuth, viewing zenith, and viewing azimuth angles
(keywords SZA, SAA, VZA, VAA respectively) for each location in the spectral arrays. If these are
in degrees, then the degrees keyword needs to be set.

 3. the sensor name, by the keyword sensor, which is currently one of: "GLI", "MERIS", SEAWIFS", or
"SPOTVEG".

OUTPUT:
Returns a bytarr in the recommended format. The recommended output format is scaled, flagged,
unsigned byte data. Fapar is scaled from (0.0 − 1.0) to (0 − 250). Values 251 to 254 are unprocessed
pixels outside the fapar confidence limits. (see detailed description for more information). Optionally
returns the anisotropically, atmospherically, corrected red and near infrared bands as fltarrs.

QUESTIONS:

Nadine Gobron
Institute for Environment and Sustainability (IES)
EC Joint Research Centre, TP 440
I−21020 Ispra (VA)
Italy
Tel: [39] 03 32 78 63 38
FAX: [39] 03 32 78 90 73
E−mail: nadine.gobron@jrc.it

or
Bernard Pinty
Institute for Environment and Sustainability (IES)
EC Joint Research Centre, TP 440
I−21020 Ispra (VA)
Italy
Tel: [39] 03 32 78 61 40
FAX: [39] 03 32 78 90 73
E−mail: bernard.pinty@jrc.it

or
Michel M. Verstraete
Institute for Environment and Sustainability (IES)
EC Joint Research Centre, TP 440
I−21020 Ispra (VA)
Italy
Tel: [39] ((0)332) 78 55 07 (direct line)
Tel: [39] ((0)332) 78 98 30 (secretariat)
FAX: [39] ((0)332) 78 90 73
E−mail: michel.verstraete@jrc.it

VERSION:

1.0

MODIFICATION HISTORY:
Written by: Malcolm Taberner, 20th August, 2001

Figure 3.7 Main IDL driver and user interface routine Fapar.pro.

17

Sensor Name
Degree Flag

RectRed
RectNIR

Fapar CheckInputKeywords

CheckInputDims

CheckData

SubsetData

AnisotropicNormalisation

DoAtmosphericRectification

RectificationOutput

DoFapar

FaparOutput

Check that
data is

compatible

Check Band
Data and
classify

Classify data.

Mask

All parameters
present?

Yes

NoCheck that
inputs exist

Dimensions
correct?

No

Yes

Select
processing

subset Use mask eq 0
to subset data

Anisotropic
normalisation

 Normalised
blue
red
near infrared

(See separate figure)

 Rectified
red
near infrared

(See separate figure)

Atmospheric
rectification

Output rectified
channels Combine mask and

rectified channels.
Rectified
near IR

Rectified
red

Fapar
calculation (See separate figure)

Fapar

Combine mask
and FAPAR

Output FAPAR
FAPAR
Product

Blue band
Red band

View Zenith Angle

View Azimuth Angle

Near Infrared band
Solar Zenith Angle

Solar Azimuth Angle Data flow
Control flow

K ey

Exit

Exit

3.5 Error Checking.

Error checking consists of checking for a complete command line, checking that the
dimensions of the arrays are compatible, and checking the band data itself. If, in the
first two cases, an error is identified, then the program aborts with an appropriate error
message. The third case is used to define the limits for Fapar calculation by
preclassifying the data and creating a mask. Results which pass through the
classification are used to subset the data. If no data pass the tests, then no data will be
processed for Fapar, but the preclassification will be returned so that the classification
results can be examined.

3.6 Anisotropic Normalisation

The procedure code for implementing anisotropic normalisation is shown in figure
3.8. The function AnisotropicNormalisation, called from the main driver program, is
the anisotropic normalisation interface and driver procedure. If the input data is in
degrees it is first converted to radians and the function Frahman is subsequently called
to compute the normalisation coefficients.

Conceptually, FRahman, should only compute the coefficients and return them,
however, the normalisation coefficients are computed for each pixel, for each band,
so, in order to save memory, the band normalisation itself occurs in FRahman.

The Rahman sensor coefficients are loaded on entry to FRahman using the IDL
call_function with sensor+’AnisotropicReflectanceParameters’ , where sensor is the
name of the sensor passed as a keyword.

The normalised band data overwrites the input band data and, unless modified, on
returning to the main driver, the angle array dimensions are reset to 0 to save memory.

3.7 Atmospher ic Rectification

The atmospheric rectification procedure is outlined in Figure 3.9. The interface is the
function DoAtmosphericRectification. On entering this function the 3 band data array
is split, for computational efficiency, and the band pairings used to rectify the red and
near infrared channels are passed through successive calls to the main rectification
function AnisotropicRectification.

In AnisotropicRectification, the sensor rectification coefficients, both numerator and
denominator coefficients if a ratio is being applied, and the nameof thesensor specific
polynomial function are loaded with sensor+’AtmosphericRectificationCoefficients’ .
The selected polynomial is then calculated using call_function with the loaded name
and sensor coefficients. The limits of the rectified bands are set to 0 Ö Brect Ö 1.0 .

The resulting rectified bands are combined in DoAtmosphericRectificationbefore
control is passed back to the main routine where, unless the code is modified, the
original band data dimensions are set to zero to save memory.

18

Figure 3.8 Anisotropic Normalisation (IDL).

19

Frahman

 AnisotropicNormalisation

sensor+’AnisotropicReflectanceParameters’

Solar
Zenith
Angle

(subset)

View
Zenith
Angle

(subset)

Relative
Azimuth
(subset)

Band
Data

(subset)

Sensor
Name

Degrees
Flag

degrees == 1?

Yes

Convert Angles

No

k
λi

Θ
λi

HG ρ
λic

Load Coefficients

for i = blue, red, near infrared

Precompute RPV Band
Invariable Components

For each band
Compute RPV band
variable components.
Normalise band.

Anistotropically
Normalised

Band
Data

(subset)

Data flow
Control flow

Key

Figure 3.9 Atmospheric Rectification (IDL).

20

Anistotropically
Normalised

Band
Data

Sensor Name
DoAtmosphericRectification

AtmosphericRectificationsensor + ’AtmosphericRectificationCoefficients’

Load coefficients and
polynomial name.

{
 ratio,

 numerator coefficients,
 denominator coefficients,

 polynomial name
}

Rectify red channel
band = 0
Data:
B

0
 = blue, B

1
 = red

Rectify near infrared channel
band = 1
Data:
B

0
 = blue, B

1
 = near infrared

Select coefficients
Select polynomial.

band
B

0

B
1

Apply selected
polynomial with
selected coefficients

Ratio?

Selected Atmospheric
Polynomial

Selected General
Polynomial

Solve polynomial

Yes Redo with
denominator
coefficients
and divide.

Atmospherically
Rectified

Red/Near Infrared

AtmosRectPoly0

AtmosRectPoly1

Poly1
 B

1 rect
 = l

1,1
 (B

0
+ l

1,2
)2 + l

1,3
 (B

1
+ l

1,4
)2 + l

1,5
 B

0
B

1

Poly0
 B

1 rect
 = l

1,1
 B

0

2 + l
1,2

 B
1

2 + l
1,3

 B
0
B

1
 + l

1,4
 B

0
 + l

1,5
 B

1
 + l

1,6

or

Either

Data flow
Control flow

Key

3.8 Fapar Calculation.

The Fapar calculation module is shown in figure 3.10. DoFapar is the interface with
the Fapar calculation module. The sensor specific coefficients and polynomial name
are loaded using call_function with sensor+FaparCoefficients and, as in the previous
module, the selected polynomial is applied using call_function with the retrieved
name and sensor coefficients. The Fapar results are returned to the main routine.

Figure 3.10 Fapar Calculation (IDL).

21

Sensor Name

Atmospherically
Rectified

Red/Near Infrared

DoFapar
Load coefficients and
polynomial name.

sensor + ’FaparCoefficients’

{
 ratio,
 numerator coefficients,
 denominator coefficients,
 polynomial name
}

Apply selected
polynomial with
numerator coefficients.
If ratio:
Reapply with denominator
coefficients and divide.

Selected FAPAR
Polynomial

Selected General
Polynomial

Solve polynomial

FAPAR

FaparPoly0

FaparPoly1

Poly2

Poly0
 B = l

1,1
 B

0

2 + l
1,2

 B
1

2 + l
1,3

 B
0
B

1
 + l

1,4
 B

0
 + l

1,5
 B

1
 + l

1,6

or

Either

 l
1,1

 B
1
 − l

1,2
 B

0
 − l

1,3

 (l
2,1

 − B
0
)2 + (l

2,2
 − B

1
)2 + l

2,3

B =
Data flow
Control flow

Key

3.9 Product Generation

The mask created by the classification, along with the Fapar results (computed from
the band data subset) are combined in FaparOutput into the recommended format, and
the resulting array returned.

If the option to return the rectified channels has been set, then the mask and rectified
data are combined in RectificationOutput and set to the variable established by the
rectification keywords.

3.10 Code modification and updating.

The code has been structured to facilitate modification at three levels:
1. At the user level, the code is organised so that the user only need (should) modify

the input/output sections etc. of the main driver program Fapar.pro and their
interactions with the concepts.

2. At the new sensor level. New sensors, using existing generic code, can be added by
simply copying, renaming, and modifying the 3 routines necessary for each sensor
in FaparSensor.pro and adding the new sensor name in the name array in
Fapar.pro.

3. At the algorithm improvement level, by adding new generic routines in
FaparGeneric.pro which are buffered from the other parts of the program by the
appropriate interfaces and control is simplified by the polynomial implementation
method.

22

Chapter 4

Generalised C++ Code

4.0 Introduction (Design Issues)

The design issues for the C++ development are similar to those for the IDL code,
however, the object oriented approach permits far greater (apparent) generalisation
with much greater flexibility for incorporating sensor specific code. This power is at
the expense of code length which, as is common for C++ programs, is much greater
than using other languages. This is due, in part, to the fact that, in order to function
properly, a complete system has to be developed and coded in C++. Code written in
C, on the other hand, can be written very concisely, and very specifically targeted, but
it is harder to maintain and modify and lacks the flexibility and ease of code
management and reusability. As with the IDL code, care has been taken to ensure the
code is as memory efficient, and computationally as fast, as possible, undergoing
several optimisations.

Object oriented programming permits programs to be developed on the basis of
concepts as defined by classes. In this implementation the core concept (class) is that
of a sensor. The sensor class has a structure and contains information that enables the
sensor data to carry out the basic functions of anisotropic normalisation, atmospheric
rectification, and derived products. In this case, of course, the only product to derive
is the FAPAR product.

The user interface implemented is as abstract and generalised as this suggests, an
instance of a sensor is created, and then the sensor is required (requested) to
anisotropically normalise, atmospherically correct, and calculate the Fapar product, for
the sensor data.

Operationally it is implemented in two stages, the first stage establishes the sensor
system with an instance of a specific sensor (GLI, MERIS, etc.), and the second phase
uses the sensor in the generalised fashion.

4.1 The C++ Package

The C++ package is provided in a gzipped tarred file, Fapar−1.0.tar.gz (58.6 kb.)
which, when unpacked, has the structure and manifest shown in figure 4.0. The
package uses the GNU package handling facilities. In the main directory are the basic
configuration details and messages. The src directory contains all the C++ source
code, and the test program and reference files are in the test subdirectory. Both
subdirectories contain their local makefiles.

At the top level, the COPYING file usually contains the ’GNU General Public
License’ but this has been substituted with a version modified from copyright notices
included with other STARS code (figure 4.1). The README file is shown in figure
4.2. The ChangeLog is provided to record modifications to the software, and is
currently empty. The NEWS file is used to publish updates of features in a user
friendly manner. The AUTHORS file contains the name(s) of the original author(s)

23

and to record any subsequent authors. The INSTALL file contains information about
the installation procedure.

Figure 4.0 The C++ FAPAR package.

24

Fapar−1.0.tar.gz 58610
Fapar−1.0.tar 686080

Fapar−1.0

Src

Tests

Name Size (bytes) Name Size (bytes)

Name Size (bytes)

AnisotropicReflectionCoeff.h, 549
Atmosphere.h, 632
AtmosphericRectification.h, 910
AtmosRectCoeff.h, 244
Definitions.h, 1168
Fapar.cpp, 5096
Fapar.h, 2545
FaparCoeff.h, 341
FaparProduct.h, 788
GeneralCommandLineParameters.h, 1901
GLIAnisRefCoeff.h, 603
GLIAtmosRect.h, 429
GLIAtmosRectCoeff.h, 1028
GLIFapar.h, 255
GLIFaparCoeff.h, 412
GLIPolynomial.h, 321
GLIRahman.h, 281
Index.h, 8518
Makefile.am, 1522
Makefile.in, 9653
Mask.h, 961
MathVector.h, 14945
MERISAnisRefCoeff.h, 601
MERISAtmosRect.h, 443
MERISAtmosRectCoeff.h, 896
MERISFapar.h, 2688
MERISFaparCoeff.h, 613
MERISPolynomial.h, 335
MERISRahman.h, 451
Polynomial.h, 600
Polynomial0.h, 2586
Polynomial1.h, 2099
Product.h, 167
Rahman.h, 2534
SEAWIFSAnisRefCoeff.h, 623
SEAWIFSAtmosRect.h, 457
SEAWIFSAtmosRectCoeff.h, 1061
SEAWIFSFapar.h, 283
SEAWIFSFaparCoeff.h, 449
SEAWIFSPolynomial.h, 349
SEAWIFSRahman.h, 310
Sensor.h, 1242
SensorGLI.h, 583
SensorMapParameters.h, 1076
SensorMERIS.h, 611
SensorSEAWIFS.h, 638
SensorSPOTVEG.h, 652
SPOTVEGAnisRefCoeff.h, 623
SPOTVEGAtmosRect.h, 458
SPOTVEGAtmosRectCoeff.h, 1027
SPOTVEGFapar.h, 284
SPOTVEGFaparCoeff.h, 430
SPOTVEGPolynomial.h, 349
SPOTVEGRahman.h, 317

FaparConvertTestData.cpp, 1565
FaparTestData.cpp, 391
Makefile.am, 311
Makefile.in, 8837
test.fapar.GLI, 39546
test.fapar.MERIS, 39546
test.fapar.SEAWIFS, 39546
test.fapar.SPOTVEG, 39546
test.in, 276827

aclocal.m4, 3539
AUTHORS, 56
ChangeLog, 0
configure, 40299
configure.in, 424
COPYING, 17992
INSTALL, 7831
install−sh, 5598
Makefile.am, 19
Makefile.in, 10572
missing, 6283
mkinstalldirs, 722
NEWS, 0
README, 4756

Fapar−1.0 668000

Figure 4.1 The copyright notice provided with the C++ package.

The other files in the top level directory relate to the compilation and installation
procedures.

The src subdirectory contains .h files containing one object class per file, and the main
driver routine in Fapar.cpp. These will be described in more detail later.

The test subdirectory contains the reference test data, test.fapar.sensor, the test input
data, test.in, and the programs to convert the test data to local machine format,
FaparConvertTestData.cpp, and run the tests, FaparTestData.cpp.

4.2 Compilation

As the package uses the GNU package handling mechanism, the reader is directed to
the Fapar−1.0 directory files for specific compilation information, and the website:
http://www.gnu.org for details of the package management software.

Briefly, the C++ package is set up with a set of standard reference files and layout
which interface with the GNU mechanism. Code, variables, libraries, and other
requirements to compile the code are established when the package is being created.
After the package is downloaded and unpacked, the user, usually, only needs to cd to
the top level directory, run the file ./configure, run make, and run make check if
required to make the tests, and run make install to install the directory into the default,
or requested, locations.

25

 COPYRIGHT:
 (C) Nadine Gobron, Bernard Pinty, and Michel M. Verstraete

The copyrights for these programs and files remain with the
authors.

Academic users:
Are authorized to use this code for research and teaching,
but must acknowledge the use of these routines explicitly
and refer to the references in any publication or work.
Original, complete, unmodified versions of these codes may be
distributed free of charge to colleagues involved in similar
activities. Recipients must also agree with and abide by the
same rules. The code may not be sold, nor distributed to
commercial parties, under any circumstances.

Commercial and other users:
Use of this code in commercial applications is strictly
forbidden without the written approval of the authors.
Even with such authorization the code may not be distributed
or sold to any other commercial or business partners under
any circumstances.

Figure 4.2 The C++ package README (continued).

26

NAME:
 README

PURPOSE:
This file provides general information about the package, written using C++, to calculate the
Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) from satellite sensor data,
optimised for individual sensors (GLI, MERIS, SEAWIFS, SPOT VEGETATION).

APPLICABILITY:
This FAPAR estimation technique is applicable only to land surfaces under clear skies. Angular,
background, and atmospheric effects are taken into account by the physical algorithm. The
algorithm requires Top of Atmosphere spectral reflectances, as they are measured by the sensor,
after radiometric calibration and after correction for the variable Sun−Earth distance.

AUTHORS:
 Malcolm Taberner, Nadine Gobron and Frederic Mélin.

REFERENCES:
Gobron,N., Pinty,B., Verstraete,M, Widlowski,J−W, (2000). ‘Advanced Vegetation Indices
Optimized for Up−Coming Sensors: Design, Performance, and Applications’ , IEEE Transactions on
Geoscience and Remote Sensing, 38, 2489−2505.

Gobron, N., F. Mélin, B. Pinty, M. M. Verstraete, J.−L. Widlowski, and G. Bucini (2001) ‘A Global
Vegetation Index for SeaWiFS: Design and Applications’ , in Remote Sensing and Climate
Modeling: Synergies and Limitations, Edited by M. Beniston and M. M. Verstraete, Kluwer
Academic Publishers, Dordrecht, 5−21.

COPYRIGHT:
 (C) Nadine Gobron, Bernard Pinty, and Michel M. Verstraete 2001 The copyrights for these
programs and files remain with the authors.

Academic users:
Are authorized to use this code for research and teaching, but must acknowledge the use of these
routines explicitly and refer to the references in any publication or work. Original, complete,
unmodified versions of these codes may be distributed free of charge to colleagues involved in
similar activities. Recipients must also agree with and abide by the same rules. The code may not
be sold, nor distributed to commercial parties, under any circumstances.

 Commercial and other users:
Use of this code in commercial applications is strictly forbidden without the written approval of the
authors. Even with such authorization the code may not be distributed or sold to any other
commercial or business partners under any circumstances.

CONTENTS:
The Fapar package contains:

In the top level directory (Fapar−1.0) the configuration files.
Two subdirectories: src and test.

The src directory contains the C++ program source code files
and local makefiles.

The test subdirectory contains a test data set and routines
to test the implementation.

Figure 4.2 (continued).

27

The test data files are:

test.in a 169 columns x 234 rows test dataset containing 4 byte floating point, band sequential,
binary, synthetic, data. The bands, in order, are: blue, red, near IR, solar zenith, solar azimuth,
view zenith, view azimuth. The angles are in degrees.

test.fapar.gli
test.fapar.meris
test.fapar.seawifs
test.fapar.spotveg

are 169 columns x 234 rows, flagged, sensor specific, binary, byte, reference data, in the
recommended output format (see below).

IMPLEMENTATION:

cd to the main Fapar−1.0 directory and follow the instructions in the INSTALL file.

 make check ensures that everything works.
It will automatically run the program, for all sensors with the test data set provided in the test

subdirectory.

EXECUTION:

See the heading in Fapar.cpp or call Fapar() without any arguments, or with the help flag, for a usage
message.

USAGE:

FAPAR blue= red= nearIR= solarAzimuth= solarZenith= viewAzimuth= viewZenith= s= of= [rf=, −−
degrees, −−byteswap, −−verbose] [−−help]

blue=, red=, nearIR=
(required) are binary files of floating point data corresponding to top of the atmosphere (TOA),
bidirectional, spectral reflectance factor (0.0 < r < 1.0). These data should be previously calibrated to
radiance and corrected for the variable solar distance.

solarAzimuth=, solarZenith=, viewAzimuth=, viewZenith= (required) are binary files of floating point
data corresponding to the solar and satellite view angles (azimuth and zenith), for each pixel location.
They are assumed to be in radians, unless the flag −−degrees is used.

s= (required) corresponds to the sensor from which the data were acquired.
of= (required) full path and name of the output file. This format is the "recommended" format for the

Fapar product. The file consists of unsigned, single byte, Fapar data scaled from between 0 and 1.0 to
between 0 and 250. Values of 251−254 correspond to spectral values outside the confidence limits.
Semantically, these loosely correspond:

251 to bad data;
252 to clouds, snow, ice;
253 to water bodies, deep shadow; and
254 to bright (unvegetated) surfaces.

rf= (optional) full path and name stem for saving anisotropically, and atmospherically, corrected red
(suffix .red) and near infrared (suffix .nir) bands (binary floating point format).

−−degrees means that input angles are in degrees.
−−byteswap swap the byte ordering of the input files when necessary.
−−help (or no parameters) print this message (no processing).
−−verbose prints out the settings.

Figure 4.2 (continued)

/configure checks the local machine, software locations, and software capability. It
selects appropriate machine local software, options and establishes pathnames, and
uses the information to create local makefiles in the package hierarchy.

The package requires a C++ compiler capable of handling templates and with a
reasonable version of the standard library. The code was developed using the GNU
C++ compiler (g++ , version 2.95.2). This compiler, which is well maintained and
up−to−date, works under the GNU Public License and is freely available.

4.3 Input and Output.

TheC++ code is designed to run from thecommand line. Input data, corresponding to
blue, red, near infrared, solar zenith, solar azimuth, view zenith, and view azimuth, are
in machine local floating point format. These are flat binary files without headers −
the dimensions of the files do not need to be defined as the complete file will be

28

QUESTIONS:
Nadine Gobron
Institute for Environment and Sustainability (IES)
EC Joint Research Centre, TP 440
I−21020 Ispra (VA)
Italy
Tel: [39] 03 32 78 63 38
FAX: [39] 03 32 78 90 73
E−mail: nadine.gobron@jrc.it

or
Bernard Pinty
Institute for Environment and Sustainability (IES)
EC Joint Research Centre, TP 440
I−21020 Ispra (VA)
Italy
Tel: [39] 03 32 78 61 40
FAX: [39] 03 32 78 90 73
E−mail: bernard.pinty@jrc.it

or
Michel M. Verstraete
Institute for Environment and Sustainability (IES)
EC Joint Research Centre, TP 440
I−21020 Ispra (VA)
Italy
Tel: [39] ((0)332) 78 55 07 (direct line)
Tel: [39] ((0)332) 78 98 30 (secretariat)
FAX: [39] ((0)332) 78 90 73
E−mail: michel.verstraete@jrc.it

VERSION:

1.0

MODIFICATION HISTORY:

Written by: Malcolm Taberner, 20th August, 2001

processed on a linear basis. Their type does not need to be specified as floating point
is expected. The files must, of course, be of identical lengths.

The type of sensor, identified by the sensor acronym (GLI, MERIS, SEAWIFS,
SPOTVEG) is identified using the sensor keyword (see figure 4.2 for actual
semantics). If the illumination and viewing geometry is in degrees, then these will be
converted to radians if the degrees keyword is set.

A byte file, with the same number of elements as the input arrays, is returned in the
recommended Fapar product format.

Optionally, the anisotropically normalised, atmospherically rectified, data can also be
saved by setting the appropriate keyword to the pathname and name for the rectified
files. The data will be saved in floating point format, with the preclassification flag
values applied. The red and near infrared bands will have the suffixes .red and .nir
respectively.

As with the IDL code, the use of flat binary arrays as input was a constraint imposed
to avoid the need to develop multifarious ingest routines; to present a robust and clean
input interface to the user; and to facilitate incorporating the code into the users’
program. As stated before, it does put the onus of converting sensor distribution
formats into the generalised format onto the user.

4.4 The main dr iver and user inter face module (Fapar.cpp)

The layout of the program is constrained, to a certain extent, by the desire to have all
the code that users are likely to want (be "allowed") to modify at this level. This has
made the code in this module more complicated and less conceptually clean than it
might otherwise have been.

The flow diagram for this module is given in figure 4.3. On entry into the program, 2
classes are instantiated: sensorMap and cLine. The first is of class
SensorMapParameters the other is of class GeneralCommandLineParameters.

The class GeneralCommandLineParameters is a derived class of the standard library
<map> with a <string, string> pairing (figure 4.4). This class parses the command
line. It maps the values associated with the command line parameters to the command
line parameters themselves. The association definitions between parameters and
keywords are in the file Definitions.h. The class can find and return the value
associated with a parameter, or simply test whether one exists. If key parameters
don’ t exist, then an error message is printed and the program aborts.

The other class, SensorMapParameters, is also a derived class of the standard library
<map> but this time with a <string, fP> pairing (figure 4.5), where the string is the
sensor name, and fP is defined by: typedef Sensor* (* fP)() (i.e. fP is a pointer to a
function creator object). Given the sensor name, it returns the appropriate function
object pointer which can be used to create an instantiation of the specific sensor. If the
sensor name cannot be found, because, for instance, it was misspelt on the command
line, an error message is printed and the program aborted.

29

Figure 4.3 Control flow in the main driver and user interface, Fapar.cpp.

30

cLine(argc, argv);

sensorMap;

Class GeneralCommandLineParameters

Class SensorMapParameters

Fapar Main driver routine
and user interface.

Create and initialise a sensor map

Create and initialise
a command line map

Print Usage?
Argc == 1 or

Print Command line?

Create and initialise data
structures and load data.

Angles in degrees?

Create and initialise a sensor class.

Create and initialise a product class.

Output product.

Blue

Red

Nir

SolarZenith

SolarAzimuth

ViewAzimuth

ViewZenith

Class MathVector<float>

Argc
Argv

Usage()
Print Usage and abort.

==(KEYVERBOSE)

Print
YesNo

==(KEYHELP)
YesNo

InFile(BLUE)

InFile(RED)

InFile(NIR)

InFile(SZA)

InFile(SAA)

InFile(VZA)

InFile(VAA)

Radians()

Initialise
and load
data

YesNo
For all angles

Class Sensor

Sensor Sensor() SensorObject()

Class Product

Fapar()
Fapar

OutFile(KEYOUTFILE) Output
Raw()

Class objects

Object functions
Control flow
Variable namesSensorMap

Class Sensor

Fapar()

Key

Figure 4.4 The GeneralCommandLineParameters class.

Figure 4.5 The SensorMapParameters class.

The program continues on to check whether to display the usage message (and abort)
and whether to print the program’s interpretation of the command line.

The data is then loaded into band and angle float instantiations of the template data
structure class Math_Vector<T> . The Math_Vector<T> class (figure 4.6) is one of
two main data structures used in the program, the other is Index<size_t>.

31

class GeneralCommandLineParameters: public map< string, string >{

public:public:public:public:public:public:public:public:public:
GeneralCommandLineParameters();
GeneralCommandLineParameters(int argc, char *argv[]);
~GeneralCommandLineParameters();
void Pr int();

//Find and return the sensor type.
string Sensor ();

// Find and return the input file name associated with
// the key name.
string inFile(string key);

// Find and return the output file name associated with
// the key name.
string outFile(string key);

//Determine whether a parameter flag has been set.
bool operator==(const string key);

//Purpose: A class to parse the command line parameters.

class SensorMapParameters: public map< string, fP >{

typedef Sensor* (* fP)();

Public:Public:Public:Public:Public:Public:Public:Public:Public:
SensorMapParameters();
~SensorMapParameters();
void Pr int();

//Match the sensor type to the sensor constructor function
//object and return it.
fP SensorObject(const string sensor);

}

//Purpose: Map the sensor type to the appropriate constructor function objects.

Figure 4.6 The Math_Vector<T> class.

32

Public:Public:Public:Public:Public:Public:Public:Public:Public:
/* * * * * * * * * * * Construction * /
MathVector () : vector<T>();
MathVector (const size_t n, const T& value) : vector<T>(n, value);
MathVector (const int n, const T& value) : vector<T>(n, value);
MathVector (const long n, const T& value) : vector<T>(n, value);
explicit MathVector (const size_t n) : vector<T>(n);
MathVector (T* b, T* e) : vector<T>(b, e);

template<class T2>
MathVector (size_t n, T2 *z): vector<T>(n);
MathVector (string filename);

~MathVector ();

/* * * * * * * * * * * Memory Manipulation * /
template<class T2>
//Allocate space.
void reserve(T2 val);

/* * * * * * * * * * * Type Conversion ** /
// It is the responsibility of the user to establish
// whether the conversion makes sense!
template <class T2>
MathVector (const vector<T2>& z): vector<T>(z.size());

//Swap the order of adjacent bytes in a pair.
void swapBytes2();
//Swap the order of adjacent bytes in a pair and adjacent byte pairs.
void swapBytes4();
//Automatically select 2 or 4 byte swapping.
void swapBytes();

/* * * * * * * * * * * Copy, generation, replacement. * * * * * * * * * * * * * /
MathVector<T> operator=(const T value);
template<class T2>
const MathVector<T> &operator=(const vector<T2> &right)const;
template<class T2>
MathVector<T> operator=(const vector<T2> &right);

// Generate a Series.
MathVector<T> & indgen(size_t value);

//Insert a value at locations defined by index.
MathVector<T> & inser t(const Index & ix, const T value);

template<class T>

class MathVector: public vector<T> {

continued ...

//Purpose: A vector data structure capable of subsetting, indexing,
and maths operations.

Figure 4.6 (continued)

33

class MathVector: public vector<T> { continued

/* * * * * * * * * * * Logical operators. * * * * * * * * * * * * * /
Index operator==(const T &value)const;
Index operator !=(const T &value);
Index operator>(const T &value)const;
Index operator<(const MathVector<T> &vec)const;
Index operator>(const MathVector<T> &vec)const;
Index operator<(const T &value)const;
Index operator<=(const T &value)const;
Index operator>=(const T &value)const;
Index operator>=(const MathVector<T> &vec)const;

/* * * * * * * * * * * Indexing operators. * * * * * * * * * * * * * /
T operator [](const size_t ix) const;
MathVector<T> operator [](const Index &ix) const;

/* * * * * * * * * * * Basic Maths Operations * * * * * * * * * * * * * * * * * * /

//Addition
template <class T2>
const MathVector<T> &operator+=(const T2 value);
template <class T2>
const MathVector<T> &operator+=(const class MathVector<T2> vec);
template <class T2>
MathVector<T> operator+(const T2 value) const;
template <class T2>
MathVector<T> operator+ (const class MathVector<T2> vec1) const ;

//Subtraction
template <class T2>
MathVector<T>& operator−=(const T2 value);
template <class T2>
MathVector<T>& operator−=(const class MathVector<T2> vec);
template <class T2>
MathVector<T> operator−(const T2 value)const;
template <class T2>
MathVector<T> operator−(const class MathVector<T2> vec1)const;

//Multiplication
template <class T2>
MathVector<T> &operator*=(const class MathVector<T2> &vec);
template <class T2>
const MathVector<T> &operator*=(const T2 value);
template <class T2>
MathVector<T> operator* (const T2 value)const ;

continued ...

Figure 4.6 (continued).

Math_Vector<T> is a derived class from the standard template library base class
vector<T> . vector<T> is an efficient, fast, implementation of a dynamic, one
dimensional array, of type <T> . Math_Vector is designed to support array based
mathematical, logical and set operations, assignment, copying, and advanced
subscripting with Index<size_t> vectors. It also supports basic, binary, input/output
(dumps), unconverted, to and from type <T> files.

The Index<size_t> class (figure 4.7) is also a derived class from the standard template
library base class vector<T> . It is an array of zero based offsets used to index and
subset elements of Math_Vector<T> or other Index<size_t> arrays. It allows basic

34

class MathVector: public vector<T> { continued

//Division
template <class T2>
MathVector<T>& operator /=(T2 value);
template <class T2>
MathVector<T>& operator /=(const class MathVector<T2> &vec);
template <class T2>
MathVector<T> operator /(const T2 value)const;
template <class T2>
MathVector<T> operator / (const class MathVector<T2>& vec1)const;
template <class T2>
MathVector<T> operator% (const T2 value)const;
template <class T2>
MathVector<T>& operator%=(T2 value);
template <class T2>
MathVector<T>& operator%=(const class MathVector<T2> &vec);
template <class T2>
MathVector<T> operator% (const class MathVector<T2>& vec1)const;

/* * * * * * * * * * * * * * * * * * Limits. * /
const MathVector<T> >(const T value);
const MathVector<T> >(const T value, const T replacement);
const MathVector<T> & lt(const T value);
const MathVector<T> & lt(const T value, const T replacement);

/* * * * * * * * * * * * * * * * * * Maths conversion. * * * * * * * * * * * * /
void abs();
void Radians();

/* * * * * * * * * * * * * * * * * * Input/Output .* * * * * * * * * * * * * * * * /
void inputRaw(string fileName, size_t numElements);
void inputRaw(string fileName);
void outputRaw(const string fileName)const;

void Pr int();
} ;

assignment, copying, subscripting, arithmetic, logical, and set operations on subscripts
arrays.

Figure 4.7 Definition of the Index<size_t> class (continued).

35

class Index: public vector<size_t> {

continued ...

Public:Public:Public:Public:Public:Public:Public:Public:Public:
/* Construction * /
Index():vector<size_t>();
Index(size_t sz):vector<size_t>(sz);
//Copy/assignment
Index(const Index & ix):vector<size_t>(ix);
const Index operator=(const Index &right);
//Subset
Index operator [](const Index & ix) const;
const size_t operator [](const size_t value) const;
size_t &operator [](const size_t value);
//Insertion
Index & inser t(const Index & ix, const size_t value);
//Generation
const Index & indGen(size_t num);

/* Logical * /
//Set operators
const Index operator ||(const Index & ix)const;
const Index operator& & (const Index & ix)const;
const Index operator !=(const Index & ix);
//Unary operators
template<class T>
Index operator<(const T &value);
template<class T>
Index operator>(const T &value);
template<class T>
Index operator<=(const T &value);
template<class T>
Index operator>=(const T &value);
template<class T>
Index operator==(const T &value);
template<class T>
Index operator !=(const T &value);

//Purpose: A vector data structure for indexing vectors.

Figure 4.7 (continued).

The band and angle instantiations are restricted to type float but user modification of
data type input is simply carried out by changing the template format T from
MathVector<float> to that desired. The data is loaded from the file whose name is
retrieved from cLine and passed to the MathVector<float> on instantiation. The size
of MathVector<float> is dynamically altered to accommodate all elements from the
file.

If the parameter flag denoting that angles are in degrees, then the angles are converted
to radians. Radians(), which is one of the mathematical operations in
MathVector<T>, does this conversion.

The processes of anisotropic normalisation, atmospheric rectification, and FAPAR
calculation all take place in the context of the sensor class which knows how to

36

class Index: public vector<size_t> { continued

/* Arithmetic * /
template <class T2>
const Index &operator+=(const T2 value) ;
const Index &operator+=(const class Index vec);
template <class T2>
Index operator+(const T2 value) const;
template <class T2>
Index &operator−=(const T2 value);
template <class T2>
Index operator−(const T2 value)const;
template <class T2>
Index &operator*=(T2 value);
template <class T2>
Index operator* (const T2 value)const;
template <class T2>
Index &operator /=(T2 value);
template <class T2>
Index operator /(const T2 value)const;
template <class T2>
Index &operator%=(const T2 value);
template <class T2>
Index operator% (const T2 value)const;
long product();

/* Location/Seek *** * * * * * * * * * * * * * * * * * /
size_t min()const;
size_t max()const;

/* * * * * * * * * * * * * Input/Output * * * * * * * * * * * * * * * * /
void outputRaw(string fileName);
void Pr int();
} ;

produce a Product class which is of type Fapar. The Product class knows how to
output its contents to file.

4.5 Error Checking

Unlike the IDL code, error checking, per se, is not a separate operation in the C++
code but comprehensive error control is built into the class operations. Parameter
errors, for example, are caught by the GeneralCommandLineParameters and
SensorMapParameters classes when a mismatch occurs. If the data file doesn’ t exist,
or does not exist in the place specified, then this is caught when attempting to load the
data by the MathVector<T> class. If the dimensions of the data do not agree, then
this is caught on instantiation of the Sensor class.

4.6 The Sensor Class

The Sensor class is the main concept, and organisational unit, for uniting the
operations possible on sensor data. Conceptually it is desirable to handle a sensor in a
very general way. It is desirable that operations and procedures can be applied to a
sensor, irrespective of the actual type of sensor. Given an instance of a class Sensor,
for example, anisotropic normalisation, atmospheric rectification, etc. should be
possible without knowing that it is a MERIS or SeaWiFS sensor that is being dealt
with. This keeps the user interface simple and uncomplicated and is the core idea
defining theprogram structure. This idea is implemented, operationally, by designing
the program to work in two stages: an initialisation stage, and an operational stage. In
the initialisation stage, an instantiation of a specific sensor is created but, using
inheritance and virtual functions, only the general interface is presented to the user
(and, indeed, a general interface is presented to the other concepts in the system
maximising the modular aspect).

At the general level, the Sensor class itself (figure 4.8) knows how to correct for
anisotropic effects, through the Rahman class member, for atmospheric effects,
through the Atmosphere class member, and to estimate FAPAR, through the Fapar
class member. It also knows how to produce a Fapar Product by manipulating these
classes, through the Fapar function. This effectively defines the interface with the
user.

Conceptually, the band and angle MathVector<float> data classes should also be
members (in fact more specialised classes), however, these were abstracted into the
main user interface to facilitate modification by the user. To avoid excessive use of
memory and to avoid time loss these are not copied into the sensor, but passed, as
references, when Sensor operations require them.

A specific sensor is instantiated by creating a sensor specific derived class of the
Sensor class, such as the SensorSEAWIFSexample in the figure. The instantiation of
SensorSEAWIFS is carried out in the initialisation stage and is created from the main
driver routine using the function creator object retrieved from the
SensorMapParameters class. Once created, however, the instantiation is held in the
main driver routine as the more general Sensor base class. This means that only the
general operations available at the sensor level can be accessed by the user interface.

37

Inheritance, and, in particular, virtual inheritance and multiple inheritance, however,
means that the general functions at the level of the base class can (and will be)
overridden by derived functions so that, although the call to Sensor uses general
syntax, if appropriate, the actual call is to the hidden, more specialised,
SensorSEAWIFS

Figure 4.8 Definition of the Sensor class.

4.7 Sensor Initialisation

The following discussion uses SEAWIFS as an example sensor, but the issues
discussed aresimilar for the other sensors, although the detailed implementation might
vary slightly. A reference to the Sensor is kept in the main driver routine. The
Sensor, itself, is a base class of SensorSEAWIFS. The SensorSEAWIFS is created
from the main driver routine using the function creator object retrieved from the
SensorMapParameters class. This creates a new instantiation of SensorSEAWIFSand
is assigned to the pointer sensor.

During initialisation of SensorSEAWIFS, the Sensor member instantiations of the
Rahman, atmosphere, and Fapar are created by the sensor (figure 4.9). As these
instantiations are created by the SensorSEAWIFS initialisation phase, they are created
as instantiations of the classes SEAWIFSRahman, SEAWIFSAtmosRect, and
SEAWIFSFapar. Rahman, atmosphere, and Fapar are the interfaces to, obviously,
the anisotropic normalisation, atmospheric rectification, and FAPAR estimation
components.

38

protected:protected:protected:protected:protected:protected:protected:protected:protected:
class Rahman *anisotropyCoeffs;
class Atmosphere atmos;
class Fapar * fapar;
class Mask *mask;

publicpublicpublicpublicpublicpublicpublicpublicpublic:
Sensor (){ }
virtual ~Sensor ();

FaparProduct *Fapar (MathVector<float> &blue, MathVector<float> &red,
MathVector<float> &nearIR, const MathVector<float> &sZ, const
MathVector<float> &sA, const MathVector<float> &vZ, const
MathVector<float> &vA, string rectOut="");

} ;

public:public:public:public:public:public:public:public:public:
SensorSEAWIFS();
~SensorSEAWIFS();
static Sensor* new_SensorSEAWIFS();
} ;

class SensorSEAWIFS : public Sensor {

class Sensor{

Creating instantiations of Rahman, atmosphere, and Fapar in turn, creates member
instantiations of AnisotropicReflectionCoeff in Rahman, Polynomial in AtmosRect
and FaparCoeff in Fapar. As these are created from SEAWIFSRahman,
SEAWIFSAtmosRect, and SEAWIFSFapar, however, they are created as
SEAWIFSAnisRefCoeff, SEAWIFSPolynomial, and SEAWIFSFapar.
SEAWIFSPolynomial, in turn, creates an instantiation of SEAWIFSAtmosRectCoeff
held as an AtmosRectCoeff class in its base class.

Figure 4.9 Instantiation of the SensorSEAWIFS class.

39

sensor

SensorSEAWIFS

Sensor

Atmos

Mask

Rahman

SEAWIFSRahman

SEAWIFSAtmosRect

SEAWIFSFapar

AtmosRect

Fapar

New

NewRed

ARC
SEAWIFSAnisRefCoeff

AnisotropicReflectionCoeff

Initialise coefficients.

Atmosphere

Poly
Name

SEAWIFSPolynomial

SEAWIFSAtmosRectCoeff
Polynomial0

Polynomial

AtmosRectCoeff

Initialise coefficients.

ARC
Ratio

SEAWIFSAtmosRect

AtmosRect

New Nir

Poly
Name

SEAWIFSPolynomial

SEAWIFSAtmosRectCoeff
Polynomial0

Polynomial

AtmosRectCoeff

Initialise coefficients.

ARC
Ratio

SEAWIFSFaparCoeffs

FaparCoeff

Initialise coefficients.New
FaparCoeffs

AnisotropyCoeffs

Fapar

Control flow

Data links

Fapar

Class instantiation

SEAWIFSFapar

Fapar
FaparCoeffs

Class objects
Key

FaparCoeffs Variable names

Base Class

Derived Class

After instantiation, AnisotropicReflectionCoeff, Polynomial,
SEAWIFSAtmosRectCoeff, and FaparCoeff contain all the information (sensor
coefficients and polynomial specifications) required to carry out anisotropic
normalisation, atmospheric rectification, and FAPAR calculation using thegeneralised
infrastructure. The outline definition of these classes is given in the appendix.

4.8 Sensor operations − calculating FAPAR (sensor.Fapar(...))

The Sensor class provides a general framework for sensor based computations and
product generations. In this implementation sensor only knows the requirements to
calculate FAPAR. The instance of sensor is held by the main driver and a Product
class, which is a base class of class FaparProduct, is created, from the main driver,
using the generalised control and function structure using the publicly accessible
sensor.Fapar(...) member function. The outline of this process is illustrated in figure
4.10.

On entry to sensor.Fapar(), an instance of the mask class is created which carries out,
and contains the results from, the preclassification testing. This information is
subsequently used to subset the band and angle data. The anisotropic normalisation
coefficients are computed from the angle data using AnisotropyCoeffs.Rahman() and
are used to normalise the band data. The normalised bands are atmospherically
rectified using the appropriate blue, red or blue, nir band pairings using
AtmosphericRectification.Rectify(). The rectified bands are then used by
Fapar.Calculate() to estimate FAPAR.

A FaparProduct class is instantiated which creates the recommended output format
from the Fapar and Mask information. It is returned to the main driver, though, as the
more general, base class, Product (figure 4.11). FaparProduct has multiple
inheritance from both the Product and MathVector<T> classes. Only the base class
Product is seen at the main driver level, however, through virtual function inheritance
of OutputRaw() from FaparProduct, it knows how to write the product data to file.
FaparProduct, in turn, knows how to output the data as it inherits the
MathVector<T> .OutputRaw() function.

4.8 Code Modification and Updating.

Modification by the user is at the main driver and interface level in Fapar.cpp. The
program is structured so that, at this level, the interface to the users programs can be
easily implemented by giving access to the parameter parsing, initialisation, data
loading and formatting functions. These aspects are straightforward and readily
modified. The interface to the sensor class and product generation is facile. The built
in error identification aids this process.

40

41

C
al

cC
oe

ff
ic

ie
nt

s(
)

Se
ns

or

F
ap

ar B
lu

e
R

ed

So
la

r
ze

ni
th

So
la

r
az

im
ut

h

V
ie

w
 a

zi
m

ut
h

Fa
pa

r(
)

A
tm

os
M

as
k

A
ni

so
tr

op
yC

oe
ff
s

F
ap

ar

M
as

k

C
re

at
e

da
ta

 m
as

k

C
re

at
e

m
as

k
C

al
cu

la
te

C
oe

ff
ic

ie
nt

s

R
ah

m
an

A
R

C

"R
ed

"

A
tm

os
ph

er
ic

R
ec

tif
ic

at
io

n

R
ec

tif
y(

)P
ol

y
N

am
e=

re
d

Po
ly

no
m

ia
l

R
at

io

R
ec

tif
y(

)

A
tm

os
ph

er
e

O
pe

ra
to

r[
](

)

Su
bs

et
D

at
a

"n
ir

"

A
tm

os
ph

er
ic

R
ec

tif
ic

at
io

n

R
ec

tif
y(

)P
ol

y
N

am
e=

ni
r

Po
ly

no
m

ia
l

A
R

C

R
ec

tif
y(

)

A
tm

os
ph

er
e

O
pe

ra
to

r[
](

)
Se

le
ct

 R
ec

tif
ic

at
io

n

Fa
pa

r

C
al

cu
la

te
()

N
or

m
al

is
e

B
an

ds

R
ec

tR
ed

A
tm

os
ph

er
ic

 R
ec

ti
fi
ca

ti
on

F
ap

ar
 E

st
im

at
io

n
A

ni
so

tr
op

ic
 N

or
m

al
is

at
io

n
M

as
k

D
at

a

C
on

tr
ol

 f
lo

w

D
at

a
Fl

ow

K
ey

St
at

ic
 L

in
ks

Fa
pa

r F
ap

ar
C

oe
ff
s

C
la

ss
 o

bj
ec

ts

C
al

cu
la

te
()

Fu
nc

tio
ns

F
ig

ur
e

4.
10

 O
pe

ra
ti

on
 o

f
th

e
Se

ns
or

 c
la

ss
 to

 c
al

cu
la

te
 F

A
P
A

R

R
ec

tN
ir

N
ea

r
in

fr
ar

ed

V
ie

w
 z

en
it

h

Se
le

ct
 R

ec
tif

ic
at

io
n

A
R

C
R

at
io

All the code that the user should not modify is behind the sensor interface. Additional
sensors are added by:
1. incorporating a new function creator object in SensorMapParameters and defining

a keyword to identify it.
2. Creating sensor specific derived classes of Rahman, Atmospheric Rectification, and

Fapar − programs which are simple to modify.

The intention is that, because of the generalisation and generalised interfaces, there
should be no need to modify any of the other control code to implement Fapar for a
new sensor. The power of C++ is such that this is the case even if the sensor
requirements, to produce FaparProduct, are considerably different amongst sensors.

Extension of the system to other products is possible.

Figure 4.11 Definition of the FaparProduct class.

42

private:private:private:private:private:private:private:private:private:
double gain;
public:public:public:public:public:public:public:public:public:
FaparProduct(): gain(250);
FaparProduct(const MathVector<float> &data, const MathVector<unsigned char> &mask):

gain(250.0);
~FaparProduct();
void OutputRaw(const string filename);
} ;

public:
Product();
~Product();
virtual void OutputRaw(const string filename) = 0;
} ;

class Product{ template<class T>

class MathVector: public vector<T> {
.......
} ;

Class FaparProduct: public Product, public MathVector<unsigned char>{

Chapter 5

Code Testing and Examples of Use

5.0 Introduction

The code has been tested against actual SeaWiFS and SPOT VEGETATION data,
however, actual data does not necessarily cover all the test situations that are desirable,
nor is it particularly easy to analyse any errors. As a result, synthetic test data set was
established and is included in both packages. As a rule, the C++ code is generally
about 3x faster than the IDL code.

5.1 The Synthetic Test Data Set.

The synthetic test data set is shown in figure 5.0. It includes 3 band files, representing
the blue, red, and near infrared bands. There are 13 different values in each band
ranging from −0.1 to +1.1 in 0.1 increments and they are intended to cover the
expected data range plus values outside the expected range. The blue band sequences
across this range for its entire length, the red band repeats an individual value 13 times
before progressing to the next value, and the near infrared band repeats an individual
value 13 x 13 times before progressing to the next value. In this manner, the entire 3−
dimensional spectral space is covered, between −0.1 and +1.1, at a resolution of 0.1.

The angle files are set to the following angle specifications:

Solar Zenith Angle 20× and 50×ÙØ
Solar Azimuth Angle 0× , 45× and 90×ÙØ
View Zenith Angle 0× , 25× and 40× Ø
View Azimuth Angle 0× .

These angles are replicated in the files, and the bands files replicated accordingly, so
that all combinations of angle values and band values exist in the data set.

5.2 The SeaWiFS Example Data Set.

The SeaWiFS data set was supplied by F. Mélin of the Inland and Marine Waters Unit
and has been reprojected from the original data. The data set was received in
TeraScan TDF format and converted to binary by the TeraScan procedure expbin.
The resulting file was imported into IDL and reformatted and split into theappropriate
files or arrays. The image specifications are given in table 5.0, and illustrated in
figures 5.1 through 5.4. The FAPAR product produced from the C++ code is given in
figure 5.5.

43

Figure 5.0 The Synthetic Test Data Set (continued).

44

Band 1

Band 3

Band 2

Figure 5.0 (continued).

45

20° 50°

Solar Zenith Angle

0° 45° 90°

Solar Azimuth Angle

0° 25° 40°

Viewing Zenith Angle

0°

Viewing Azimuth Angle

Table 5.0 Specifications of the SeaWiFs image.

Specifications
Sensor SeaWiFs

File Name S1998219_1998219.eur.bin
File Type TeraScan

Date 7th August, 1998
Columns 1530

Rows 1376
Data Format Integer (2 byte)
Band scaling 0.001
Angle Scaling 0.010
Angle Units degrees

Figure 5.1 The SeaWiFs image, reflectance range 0−0.4, bands 443, 670, and 865 nm.
in blue, green, and red channels respectively.

46

Figure 5.2 Solar zenith angles for the SeaWiFs image.

Figure 5.3 Viewing zenith angles for the SeaWiFs image.

47

Figure 5.4 Relative azimuth angles for the SeaWiFs image.

48

Figure 5.5 SeaWiFs image: Fraction of Absorbed Photosynthetically Active Radiation
(FAPAR).

5.3 The SPOT VEGETATION Data Set.

The SPOT VEGETATION data were in P format, the only format usable with the
FAPAR algorithm, as other formats have undergone further processing. The data
were supplied in the original SPOT VEGETATION HDF distribution (CD) format.
Typically the image data is stored as an HDF SDS data set and can be dumped
(running under Unix) using the hdp utility supplied with the HDF distribution. To
dump the satellite azimuth angles to a flat binary file:

hdp dumpsds −d 0001_SAA.HDF >0001_SAA.RAW
was used, and to dump the tag (image) information, held in SPOT VEGETATION as
VD data:

hdp dumpvd 0001_SAA.HDF
The resulting files were imported into IDL and scaled appropriately. In the original
SPOT VEGETATION data, angular information is only provided for every eighth
pixel on a given line, and for every eighth line. The angles files were, therefore,
interpolated to the same dimensions as the image data. These were then dumped as

49

flat binary floating point files for input into the C++ code.

Two examples are shown. The specifications of the first example, covering Burkino
Fasso, are given in table 5.1. The image data is shown in figure 5.6, the angle data in
figures 5.7 through 5.9, and the FAPAR product in figure 5.10. 919540 pixels were
processed for FAPAR and there were no "bad" pixels.

Code performance is similar to that for SeaWiFS which is to be expected as the data
sets are similar in size.

Table 5.1 Specifications of the SPOT VEGETATION test image (Burkino Fasso).

Specifications
Sensor SPOT VEGETATION

Product Type P
File Name 0001_** .HDF
File Type SPOT HDF

Date 13th December, 1999
Band Columns 1009

Band Rows 992
Band Format Integer (2 byte)
Band scaling 0.001

Angle Columns 127
Angle Rows 125

Angle Format Byte
Zenith Angle Scaling 0.500

Azimuth Angle Scaling 1.500
Angle Sample Rate 8 x 8

Angle Units degrees

50

Figure 5.6 The SPOT VEGETATION Burkino Fasso image, reflectance range 0−0.4,
bands 450, 640, and 840 nm. in blue, green, and red channels respectively.

51

Figure 5.7 Solar zenith angles for the SPOT VEGETATION Burkino Fasso image.

Figure 5.8 View zenith angles for the SPOT VEGETATION Burkino Fasso image.

52

Figure 5.9 Relative azimuth angles for the SPOT VEGETATION Burkino Fasso
image.

53

Figure 5.10 SPOT VEGETATION Burkino Fasso image: Fraction of Absorbed
Photosynthetically Active Radiation (FAPAR).

The second SPOT VEGETATION example data set has the specifications listed in
table 5.2, and covers Libya and Algeria north to the Netherlands (figure 5.11). The
size, at more than 7 Ú 106 pixels, is much larger than the other data sets. The angle
data is shown in figures 5.12 through 5.14, and the FAPAR product in figure 5.15.

IDL code performance, table 5.1, is much poorer with this image than for the smaller
images (by an order of magnitude). The main reason for this is that computation is
taking place on a machine with 512 Mb of RAM and has 512 Mb of disk based
"RAM". IDL appears to perform poorly when disk based RAM is used, as chip based
RAM is exhausted, spending a considerable amount of time paging in and out. The
C++ code, however, computed the FAPAR in only 3 x the time taken for the Burkino
Fasso data set.

54

Table 5.2 Specifications of the SPOT VEGETATION, W. Europe, image.

Specifications
Sensor SPOT VEGETATION

Product Type P
File Name 0001_** .HDF
File Type SPOT HDF

Date 27th October, 1999
Band Columns 1961

Band Rows 3585
Band Format Integer (2 byte)
Band scaling 0.001

Angle Columns 246
Angle Rows 449

Angle Format Byte
Zenith Angle Scaling 0.500

Azimuth Angle Scaling 1.500
Angle Sample Rate 8 x 8

Angle Units degrees

55

Figure 5.11 The SPOT VEGETATION, W. Europe, image, reflectance range 0−0.4,
bands 450, 640, and 840 nm. in blue, green, and red channels respectively.

56

Figure 5.12. Solar Zenith Angles for the
SPOT VEGETATION, W. Europe,
image.

Figure 5.13 Viewing zenith angles for the
SPOT VEGETATION, W. Europe,
image.

Figure 5.14 Relative azimuth angles for SPOT VEGETATION, W. Europe, image.

57

Figure 5.15 Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) for
the SPOT VEGETATION, W. Europe, image:

58

References

1. Gobron, N., Pinty, B., Verstraete, M. M., Widlowski, J−L., (2000). ‘Advanced
Vegetation Indices Optimized for Up−Coming Sensors: Design, Performance,
and Applications’ , IEEE Transactions on Geoscience and Remote Sensing, 38,
2489−2505.

2. Gobron, N., Pinty, B., Verstraete, M. M., Taberner, M., (2002). ‘Medium
Resolution Imaging Spectrometer (MERIS) An optimized FAPAR Algorithm
− Theoretical Basis Document.’ − Joint Research Centre, Institute for
Environment and Sustainability, Publication no.: EUR 20143 EN.

3. Gobron, N., Pinty, B., , Mélin, F., Taberner, M., Verstraete, M. M., (2002). ‘Sea
Wide Field−of−View Sensor (SeaWiFS) An optimized FAPAR Algorithm −
Theoretical Basis Document.’ − Joint Research Centre, Institute for
Environment and Sustainability, Publication no.: EUR 20148 EN.

4. Gobron, N., Pinty, B., Verstraete, M. M., Taberner, M., (2002). ‘VEGETATION
An optimized FAPAR Algorithm − Theoretical Basis Document.’ − Joint
Research Centre, Institute for Environment and Sustainability, Publication
no.: EUR 20146 EN.

5. Gobron, N., Pinty, B., Verstraete, M. M., Taberner, M., (2002). ‘Global Land
Imager (GLI) An optimized FAPAR Algorithm − Theoretical Basis
Document.’ − Joint Research Centre, Institute for Environment and
Sustainability, Publication no.: EUR 20147 EN.

6. Gobron, N., Mélin, F., Pinty, B., Verstraete, M. M., Widlowski, J.−L., Bucini, G.,
(2001). ‘A Global Vegetation Index for SeaWiFS: Design and Applications’ ,
in Remote Sensing and Climate Modeling: Synergies and Limitations, Edited
by M. Beniston and M. M. Verstraete, Kluwer Academic Publishers,
Dordrecht, 5−21.

7. Pinty, B., Gobron, N., Mélin, F., Pinty, B., Verstraete, M. M., (2002). ‘A Time
Composite Algorithm − Theoretical Basis Document. ’ Joint Research
Centre, Institute for Environment and Sustainability, Publication no.: EUR
20150 EN.

8. Rahman, H., Pinty, B., Verstraete, M. M., (1997). ’Coupled surface−atmosphere
reflectance (CSAR) model. 2. Semiempirical surface model usable with
NOAA advanced very high resolution radiometer data.’ J. Geophys. Res.
102:9431−9446.

59

Appendix

Definition of the C++ Classes

60

61

class SensorMapParameters: public map< string, fP >{

typedef Sensor* (* fP)();

Public:Public:Public:Public:Public:Public:Public:Public:Public:
SensorMapParameters();
~SensorMapParameters();
void Pr int();

//Match the sensor type to the sensorconstructor function
//object and return it.
fP SensorObject(const string sensor);

}

//Purpose: Map the sensor type to the appropriate constructor function objects.

class GeneralCommandLineParameters: public map< string, string >{

public:public:public:public:public:public:public:public:public:
GeneralCommandLineParameters();
GeneralCommandLineParameters(int argc, char *argv[]);
~GeneralCommandLineParameters();
void Pr int();

//Find and return the sensor type.
string Sensor ();

// Find and return the input file name associated with
// the key name.
string inFile(string key);

// Find and return the output file name associated with
// the key name.
string outFile(string key);

//Determine whether a parameter flag has been set.
bool operator==(const string key);

}

//Purpose: A class to parse the command line parameters.

62

protected:protected:protected:protected:protected:protected:protected:protected:protected:
class Rahman *anisotropyCoeffs;
class Atmosphere atmos;
class Fapar * fapar;
class Mask *mask;

publicpublicpublicpublicpublicpublicpublicpublicpublic:
Sensor (){ }
virtual ~Sensor ();

FaparProduct *Fapar (MathVector<float> &blue, MathVector<float> &red,
MathVector<float> &nearIR, const MathVector<float> &sZ, const
MathVector<float> &sA, const MathVector<float> &vZ, const
MathVector<float> &vA, string rectOut="");

} ;

public:public:public:public:public:public:public:public:public:
SensorSEAWIFS();
~SensorSEAWIFS();
static Sensor* new_SensorSEAWIFS();
} ;

class SensorSEAWIFS : public Sensor {

class Sensor{

63

protected:protected:protected:protected:protected:protected:protected:protected:protected:
class AnisotropicReflectionCoeff *aRC;

template<class T>
void Coefficients(const MathVector<T> &solarZenith, const MathVector<T>

&viewZenith, const MathVector<T> &solarAzimuth,const
MathVector<T> &viewAzimuth);

public:public:public:public:public:public:public:public:public:
Rahman();
~Rahman();
template<class T>
void CalcCoefficients(const MathVector<T> &sz, const MathVector<T> &vz,

const MathVector<T> &sa, const MathVector<T> &va);
void Pr int();
} ;

class Rahman : public vector< MathVector<float> >{

publicpublicpublicpublicpublicpublicpublicpublicpublic:
SEAWIFSRahman();
~SEAWIFSRahman();
void Pr int();
} ;

class SEAWIFSRahman : public Rahman {

public:public:public:public:public:public:public:public:public:
Atmosphere(){ }
~Atmosphere(){ }

AtmosphericRectification *operator [](size_t i);
AtmosphericRectification *operator [](string id);
} ;

class Atmosphere : public vector<AtmosphericRectification *>{

64

protected:protected:protected:protected:protected:protected:protected:protected:protected:
Polynomial *poly;
string name;

publicpublicpublicpublicpublicpublicpublicpublicpublic:
Atmospher icRectification();
Atmospher icRectification(const string bandID): name(bandID);
~Atmospher icRectification();

bool operator==(string id);
void Rectify(const MathVector<float> &band1, const MathVector<float>

&band2);
void Rectify(const MathVector<float> &band1, const MathVector<float>

&band2, const MathVector<unsigned char> &mask);
void Dump(const MathVector<unsigned char> &mask, string fileName);
void Pr int();
} ;

public:public:public:public:public:public:public:public:public:
SEAWIFSAtmosRect(const string bandID):
AtmosphericRectification(bandID);
~SEAWIFSAtmosRect();
 void Pr int();
} ;

class AtmosphericRectification: public MathVector<float>{

class SEAWIFSAtmosRect : public AtmosphericRectification{

private:private:private:private:private:private:private:private:private:
float irN, redN, constN;
float irC, redC, constD;

protected:protected:protected:protected:protected:protected:protected:protected:protected:
FaparCoeff faparCoeffs;
public:
Fapar ();
~Fapar ();

virtual void Calculate(const MathVector<float> &red, const
MathVector<float> & ir);

virtual void Calculate(const MathVector<float> &red, const
MathVector<float> & ir, const MathVector<unsigned char> &mask);

FaparProduct *Product(const MathVector<unsigned char> &mask);
void Pr int();

public:public:public:public:public:public:public:public:public:
SEAWIFSFapar ();
~SEAWIFSFapar ();
void Pr int();
} ;

class Fapar: public MathVector<float>{

class SEAWIFSFapar: public Fapar{

private:private:private:private:private:private:private:private:private:
double gain;
public:public:public:public:public:public:public:public:public:
FaparProduct(): gain(250);
FaparProduct(const MathVector<float> &data, const MathVector<unsigned char> &mask):

gain(250.0);
~FaparProduct();
void OutputRaw(const string filename);
} ;

public:
Product();
~Product();
virtual void OutputRaw(const string filename) = 0;
} ;

class Product{ template<class T>

class MathVector: public vector<T> {
.......
} ;

Class FaparProduct: public Product, public MathVector<unsigned char>{

65

public:public:public:public:public:public:public:public:public:
AnisotropicReflectionCoeff();
~AnisotropicReflectionCoeff();
void Pr int()const;
} ;

public:public:public:public:public:public:public:public:public:
SEAWIFSAnisRefCoeff()
~SEAWIFSAnisRefCoeff(){ }
 void Pr int();
} ;

class AnisotropicReflectionCoeff : public vector<AnisoRefCoeff> {

struct AnisoRefCoeff { float r, p, k;} ;

class SEAWIFSAnisRefCoeff : public AnisotropicReflectionCoeff {

public:public:public:public:public:public:public:public:public:
AtmosRectCoeff();
~AtmosRectCoeff();
} ;

publicpublicpublicpublicpublicpublicpublicpublicpublic:
SEAWIFSAtmosRectCoeff();
SEAWIFSAtmosRectCoeff(string band);
~SEAWIFSAtmosRectCoeff();
} ;

Class SEAWIFSAtmosRectCoeff : public AtmosRectCoeff{

class AtmosRectCoeff : public vector<AtmosRectRatio> {

struct AtmosRectRatio{ float numerator, denominator;} ;

publicpublicpublicpublicpublicpublicpublicpublicpublic:
FaparCoeff();
~FaparCoeff();
void Pr int()const;
} ;

publicpublicpublicpublicpublicpublicpublicpublicpublic:
SEAWIFSFaparCoeff();
~SEAWIFSFaparCoeff();
void Pr int();
} ;

class SEAWIFSFaparCoeff : public FaparCoeff {

class FaparCoeff : public vector<float> {

66

publicpublicpublicpublicpublicpublicpublicpublicpublic:
SEAWIFSPolynomial(const string bandID)
~SEAWIFSPolynomial(){ }
} ;

protected:protected:protected:protected:protected:protected:protected:protected:protected:
AtmosRectCoeff aRC;
bool ratio;

publicpublicpublicpublicpublicpublicpublicpublicpublic:
Polynomial();
~Polynomial();
virtual void Rectify(const MathVector<float> &band1, const MathVector<float>

&band2, MathVector<float> *output);
virtual void Rectify(const MathVector<float> &band1, const MathVector<float>

&band2, const MathVector<unsigned char> &mask, MathVector<float>
*output);

} ;

private:private:private:private:private:private:private:private:private:
 float mB1N, cB1N, mB2N, cB2N, mB1B2N;
 float mB1D, cB1D, mB2D, cB2D, mB1B2D;
protectedprotectedprotectedprotectedprotectedprotectedprotectedprotectedprotected:
 void SetCoefficients();
publicpublicpublicpublicpublicpublicpublicpublicpublic:
Polynomial0();
~Polynomial0();
void Rectify(const MathVector<float>

&band1, const MathVector<float>
&band2, MathVector<float>
*output);

void Rectify(const MathVector<float>
&band1, const MathVector<float>
&band2, const
MathVector<unsigned char>
&mask, MathVector<float>
*output);

private:private:private:private:private:private:private:private:private:
float l1, l2, l3, l4, l5, l6;
protectedprotectedprotectedprotectedprotectedprotectedprotectedprotectedprotected:
void SetCoefficients();
public:public:public:public:public:public:public:public:public:
Polynomial1();
~Polynomial1();
void Rectify(const MathVector<float>

&band1, const
MathVector<float> &band2,
MathVector<float> *output);

void Rectify(const MathVector<float>
&band1, const
MathVector<float> &band2,
const MathVector<unsigned
char> &mask, MathVector<float>
*output);

} ;

publicpublicpublicpublicpublicpublicpublicpublicpublic:
MERISPolynomial(const string bandID);
~MERISPolynomial(){ }
} ;

class MERISPolynomial : public Polynomial1 {

class Polynomial1 : public Polynomial {

class SEAWIFSPolynomial : public Polynomial0 {

class Polynomial0 : public Polynomial {

Class Polynomial {

67

Public:Public:Public:Public:Public:Public:Public:Public:Public:
Mask();
explicit Mask(size_t sz) : MathVector<unsigned char>(sz);
Mask(const MathVector<float> &bc, const MathVector<float> &rc,const

MathVector<float> &nc);
 ~Mask();
} ;

class Mask : public MathVector<unsigned char> {

template<class T>

class MathVector: public vector<T> {
.......
} ;

